
16

Foundations of Search
A Perspective from Computer Science

James A. R. Marshall and Frank Neumann

Abstract

Since Alan Turing, computer scientists have been interested in understanding natural
intelligence by reproducing it in machine form. The fi eld of artifi cial intelligence is
characterized, to a large extent, by search algorithms. As search is a computational
process, this too has been well studied as part of theoretical computer science, leading
to famous results on the computational hardness of problems. This chapter provides an
overview of why most search problems are known to be hard and why general search
strategies are impossible. It then discusses various heuristic approaches to computation-
al search. The fundamental message intended is that any intelligent system of suffi cient
complexity, using search to guide its behavior, should be expected to fi nd solutions
that are good enough, rather than the best. In other words, it is argued that natural and
artifi cial brains should satisfi ce rather than optimize.

Introduction

Almost since the fi rst digital computers were created, computer scientists have
speculated on their potential capacity for intelligent behavior (Turing 1950).
Such thinking prompted the creation of the modern discipline of “artifi cial in-
telligence” (AI), which seeks to reproduce animal or human-level intelligence.
Classic problem domains for AI include formal games such as chess (Shannon
1950). Other forms of richer interaction are even more interesting, the most
stringent of which is probably Turing’s famous “imitation game” (typically
referred to now as the “Turing test”) or variants thereof, in which a computer
attempts to fool a human interrogator that it is itself human, by maintaining
a conversation on any topic (Turing 1950). AI techniques are also applied to
solve computationally hard constraint satisfaction and optimization problems,

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

258 J. A. R. Marshall and F. Neumann

such as the well-known traveling salesman problem, in which a salesman must
fi nd the shortest circular route visiting all cities on his itinerary exactly once.
In all these areas of AI, computational search plays a key role.

The earliest AI approaches to chess used search methods to choose promis-
ing moves (Shannon 1950), and contemporary chess computers have managed
to beat human grandmasters by deploying massive computational power along-
side dictionaries of expert-provided openings and gambits. Similarly, compu-
tational search can be used in developing a conversational program to play
Turing’s imitation game. Finally, AI approaches to traveling salesman prob-
lems and their like use computational search to fi nd a good quality solution.

Thus, search appears to be a mainstay of AI. In fact, it could be claimed that
all intelligence is search (natural as well as artifi cial). This is likely to be an
overstatement; a human chess expert can only evaluate a fraction of the moves
considered by a computer, yet can still reliably beat their artifi cial opponent;
similarly it is not obvious that we perform a search process analogous to the
computer’s when we talk to each other, yet our conversational ability is much
greater. Still, it seems likely that search processes are involved in many impor-
tant aspects of behavior and intelligence, both human and animal. By search
process, we mean an internal search process over different representations of
a problem within a brain. In this chapter, we explore what is known about
computational search and its limitations, and speculate about how the study of
natural intelligence might benefi t from this information.

The Problem with Computational Search

Given their pervasiveness and general importance, much research effort in
theoretical computer science has been invested in analyzing search problems
and algorithms. A search problem is defi ned as considering a set of alternative
solutions X, where the quality of each solution x in X can be evaluated using an
objective function f(x). The search problem is then usually to fi nd the solution
x with the “best” value f(x) (typically by minimizing or maximizing f). In this
case, the search problem is one of optimization according to the objective func-
tion; however, the search could also be to satisfi ce by fi nding a solution whose
objective value satisfi es some minimum requirement. The defi nition just given
is very general; there are almost no constraints on what the solutions in X and
the objective function can represent. A search algorithm is then an automatic
procedure for attempting to fi nd the required solution to a given problem (i.e.,
for solving the problem), whether that requirement is to fi nd the best available
solution or simply one of suffi cient quality. As we will discuss, some very
powerful results have been derived showing that fi nding a good algorithm for
search problems of the kind just described can present considerable diffi culties.

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

Foundations of Search 259

Most Interesting Search Problems Are Hard

Before considering if search problems are hard, it is necessary to defi ne what
is meant by “hard.” In theoretical computer science, this is done in terms of
the effi ciency of algorithms to solve problems. Briefl y, an effi cient algorithm is
one that runs in polynomial time; in our search terms, this means that the time
to fi nd the best solution in a set having size n is no longer than a polynomial
function of n, such as log n, n, n2, etc. This upper bound is denoted with “big-
oh” notation, such as O(n2), and one says that such an algorithm is in O(n2). In
contrast, an ineffi cient algorithm is one that runs in exponential time; in other
words, the upper bound is an exponential function of the size of the problem
set n, such as 2n, nn, etc. As before, this upper bound is notated as O(nn), and we
say that an algorithm is in O(nn), for example. This approach to studying algo-
rithms neglects a lot of detail and focuses instead on what is really important:
how the running time of the algorithm increases with the size of the solution
set to which it is applied. The approach also ignores the detail of the compu-
tational device on which the algorithm is running, since all discrete computers
of a certain complexity are able to do the same kinds of computation (Church
1936; Turing 1936).

Now consider the following apparently simple problem. The problem is
from Boolean logic, where all formulae are written in terms of variables,
which can be TRUE or FALSE, logical AND (TRUE if both arguments are
TRUE, denoted), logical OR (TRUE if either argument is TRUE, denoted
), and logical NOT (TRUE if the argument is FALSE, and FALSE if the argu-
ment is TRUE, denoted). The problem is then to fi nd a satisfying assignment
of truth values to variables, such that a formula of the following kind evaluates
to TRUE:

A C D B B C∨ ∨¬()∧ ∨¬ ∨(). (16.1) 

The formula above is satisfi able if values of the variables can be found such
that the fi rst clause (in brackets) and the second clause are both true. Each
clause is true if any of its literals (variables or their negation) are true. Since
this is a satisfi ability problem (i.e., is the formula satisfi able or not?), and since
each clause has three literals, it is referred to as 3-SAT.

The above may seem rather technical and arcane, but 3-SAT has some fas-
cinating and very useful properties. First, there is no known algorithm that can
solve 3-SAT in less than exponential time, so as the number of clauses in the
formula grows, the search time grows exponentially. This effectively means
that in the worst case, the search for a solution might need to include every
member of the solution set, which is clearly bad. However 2-SAT, in which
the number of literals per clause is 2 instead of 3, can be solved with a poly-
nomial-time algorithm; this transition in hardness is also seen in other kinds
of problems. The particularly interesting thing about 3-SAT, however, is that
it is representative of the diffi culty of all interesting search problems. 3-SAT

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

260 J. A. R. Marshall and F. Neumann

can be converted by a polynomial-time algorithm to all other problems for
which no effi cient algorithm is known, such as the traveling salesman problem
mentioned earlier. This equivalence may not be immediately apparent, since
3-SAT is a yes/no problem, whereas the traveling salesman problem is one
of optimization. A traveling salesman problem can, however, be turned into a
decision problem by phrasing it as such: Is there a tour of length no more than
k in this graph? Actually, the perceptive reader will see that this formulation is
closer to a description of a satisfi cing problem than an optimization problem;
the link to optimization further requires that k be reduced progressively until
the answer to the preceding question is “no,” at which point the optimal solu-
tion is that most recently found in determining the answer to the question for
a larger value of k. Thus, fi nding an effi cient algorithm for 3-SAT, or any of
these other equivalent problems, would result in an effi cient algorithm for all
such problems. Computer scientists refer to these problems as belonging to the
complexity class NP-Complete (NP-C). For a problem to be a member of NP-
C, it means that no effi cient algorithm for it is known to exist, so the only al-
gorithms known for them run in exponential time. In contrast, those problems
for which effi cient algorithms are known belong to the complexity class P (for
polynomial time). It is not known whether effi cient algorithms for problems
in NP-C do not exist, or whether they simply have not yet been discovered.
However, given the decades of research into such problems, the consensus
among computer scientists is that effi cient algorithms for them really do not
exist. This could be signifi cant for brains, if they use computational search
procedures for certain problems of that nature.

Effi cient yet General Search Algorithms Are Impossible

The computational hardness of most interesting search problems, described in
the last section, has led computer scientists to consider a number of heuristic
approaches to fi nding solutions that are of good quality. Some of this research
has been biologically inspired, although much mathematically grounded heu-
ristics work has also been done. Some heuristics researchers, primarily in
evolution-inspired algorithms, began to make claims that their heuristics were
generally applicable to all problems, or even superior to alternative heuris-
tics. In response to this, the no-free-lunch theorems for search were developed
(Wolpert and Macready 1997). These results appear to prove that, across all
possible search problems, and for any objective function, all search algorithms
have equivalent performance. Given the strength of their results, these theo-
rems require very stringent and unrealistic assumptions about the nature of
the set of problems and the behavior of the algorithms. Critics countered that
since these assumptions do not correspond to real-world search problems and
algorithms, the no-free-lunch theorems do not offer useful results, and indeed
some algorithms can be generally superior. A more recent extension of the

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

Foundations of Search 261

no-free-lunch framework relaxes these assumptions and concludes that in fact
there is a generally superior search algorithm which maximizes the expected
quality of the solutions it fi nds in any fi nite amount of time, but it is blind
enumeration of the set of possible solutions (Marshall and Hinton 2010). Less
formally, the intuitive message is that when playing a game where the aim is to
draw numbered balls out of a bag to fi nd as high a value as possible in a given
number of attempts, the best strategy is not to put balls you have already seen
back in the bag before drawing again! Of course, such results do not mean that
a particular search algorithm cannot be designed to perform well on a particu-
lar set of related problems. However, in conjunction with the computational
hardness of most interesting problems, no-free-lunch theorems do seem to rule
out general, effi cient search algorithms, that are able to fi nd the optimal solu-
tion to any problem in less time than it takes to enumerate all the solutions to
that problem.

Why Things Might Not Be So Bad

Our discussion thus far has shown how most interesting search problems are
computationally hard and that there is no generally superior search heuristic
other than blind enumeration of all possible solutions. While algorithms can
still be designed on a problem-by-problem basis to fi nd good quality solutions,
these results suggest that fi nding general search principles in the brain might
be futile, and that search processes in the brain might only be applied to com-
paratively simple problems. In practice, however, computational search might
be easier than it fi rst appears.

Average Case versus Worst Case

The fi rst way in which computational search might not be so diffi cult is that
problems which are hard in the worst case might be easy on average. In de-
scribing the class of NP-C problems above, we defi ned it in terms of problems
whose best-known algorithms run in exponential time. However, for expo-
nential-time algorithms, such as those in O(2n), remember that the 2n is an
upper bound on the running time, so the running time can actually be lower
on a particular instance of a problem. This upper bound is derived in terms of
worst-case diffi culty of a problem. However, the average-case diffi culty of a
problem is much more relevant, for brains as well as for computer scientists.
Returning to the 3-SAT problem, it is easy to see that many instances of the
problem can quickly be discovered to be satisfi able or unsatisfi able, such as
the formula:

A A A A A A∨ ∨¬()∧ ∨ ∨¬(), (16.2) 

where any value of A makes the formula true, or

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

262 J. A. R. Marshall and F. Neumann

A A A A A A∨ ∨()∧ ¬ ∨¬ ∨¬(), (16.3) 

where no value of A makes the formula true. In fact, it is interesting to know
that for 3-SAT, there is a phase transition in the diffi culty of problem instances.
Below a critical threshold of the ratio of number of clauses to number of vari-
ables, almost all instances are satisfi able; above that threshold, almost all in-
stances are unsatisfi able (Kirkpatrick and Selman 1994). The computationally
diffi cult instances of 3-SAT are clustered around this critical threshold. Since
3-SAT is a representative computationally hard problem, this could represent
a general characteristic of other hard search problems. Although a brain could
be tackling a search problem that is, in theory, computationally infeasible, in
practice, for most of the instances of that problem, it either readily encounters
an optimal solution or it will be quickly established that such a solution does
not exist. What matters for the brain is the kinds of problems that it has encoun-
tered over evolutionary time; since these problems are unlikely to all be hard
instances, effective shortcuts in the search process might evolve.

Performance of Simple Heuristics

Another way in which shortcuts might be taken by brains doing computational
search is in the use of heuristics. Although earlier we pointed out that the only
general search heuristic is blind enumeration, for limited classes of problems
certain very simple classes of heuristic can be shown to have better-than-av-
erage performance. One particularly simple local-search heuristic is gradient
descent. In this framework, some local structure over the set of solutions is
induced by defi ning a neighborhood operator, such as assignments to variables
that differ in only one truth-value in the 3-SAT example discussed earlier. Local
search then iterates a simple procedure: evaluate the quality of the current so-
lution (in the 3-SAT example, this could be number of true clauses), evaluate
the qualities of all neighboring solutions, then move to the neighbor giving the
best improvement. If no improvement is possible, the search procedure termi-
nates and the solution arrived at is chosen as the best found during the search.
It is hard to imagine a more simple-minded search procedure, yet it has been
shown that, for a variety of NP-C problems (e.g., the traveling salesman prob-
lem), choosing a neighborhood function having certain properties results in
some interesting performance guarantees for the search process (Grover 1992).
In particular, it can be shown that the local search process always converges
on a solution whose quality is better than the average quality of the solution
set, and that it will do so effi ciently, in time proportional to the size of the solu-
tion set. Thus, even if faced with a hard search problem, in which the solution
is neither easily found nor easily shown not to exist, a brain could effi ciently
arrive at a better-than-average solution, by following a very simple heuristic.

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

Foundations of Search 263

Learning and Evolvability

Thus far we have considered the optimization of a given target function; here
we turn to another relevant topic related to search: learning. Humans learn
all the time and develop new skills. Essentially, the brain is solving a lot of
classifi cation problems. Considering such classifi cation problems, one tries to
learn a function that gives a good classifi cation for a given set of examples. In
the simplest case, consider a function f that takes elements from a given set X
and classifi es them as either positive or negative. The fi eld of machine learn-
ing (Mitchell 1997) is an integral part of computer science, whose goal is to
design algorithms that make use of empirical data to do classifi cation. Based
on given observed examples (training data) and their classifi cation, a learning
algorithm has to generalize this classifi cation to unknown examples coming
from the same domain.

Again, theoretical computer scientists are interested in which classes of
functions can be learned in polynomial time and which classes require expo-
nential time to be learned. The fi eld of computational learning theory (Kearns
and Vazirani 1994) studies learning from a theoretical point of view and classi-
fi es which functions can be learned effi ciently. Effi cient always means in poly-
nomial time with respect to the given input size n and the inverse of a tolerance
error ε. The goal is to determine which classes of functions can be learned in
polynomial time and which ones require more computational effort.

Recently, these techniques have been used to gain new insight into evo-
lutionary learning by considering which classes of functions are learnable
through an evolutionary algorithm. This is done under the term evolvability.
Below, we introduce the most popular models in computational learning and
relate them to the notion of evolvability. Later we will introduce a kind of
evolutionary algorithm that is used for learning unknown functions in practice.

PAC Learning

The most popular model of learning in computational learning theory is the
probably approximately correct (PAC) learning model developed by Valiant
(2009). This model introduces complexity theory concepts, of the kind de-
scribed in earlier sections, to machine learning and thus allows one to deter-
mine which classes of functions are learnable in an effi cient way.

To make the task precise, the goal is to learn an unknown function, f: X → Y,
mapping elements from some input space X to their corresponding class values
in Y. The function f comes from a known concept class C which contains func-
tions of similar structure.

In the PAC learning model, the algorithm is given random examples of X
according to an unknown distribution D and their corresponding class val-
ues. The goal is to compute a hypothesis h which approximates f in the fol-
lowing sense: Whenever a new example x from X is drawn according to the

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

264 J. A. R. Marshall and F. Neumann

distribution D, h makes with probability 1 – δ (where δ is positive but close to
zero) an error of at most ε; that is, |h(x) – f(x)| < ε holds with probability at least
1 – δ. A concept class C is learnable if an algorithm exists to solve the given
task for every function in C in polynomial time. Note that there is no restriction
on how an algorithm learns the given class of functions.

Often Y = {+1, –1} holds; that is, the function can only take on these two
class values. The reader may think of examples that are classifi ed either as
positive or negative, such as “there is a predator in the grass” or “there is not a
predator in the grass” to give a biologically relevant example.

The basic PAC learning model is also referred to as distribution-independent
learning as it works for any fi xed distribution D. In the distribution-specifi c
PAC learning model, the algorithm is required to learn the function f with re-
spect to a distribution D that is known in advance. A more restricted model of
PAC learning is statistical query (SQ) learning (Kearns 1998). SQ learning is
motivated by random noise in the learning process. SQ learning is a natural
restriction of PAC learning, where the algorithms are only allowed to use sta-
tistical properties of the data set rather than the individual examples.

Evolvability

Using these formal models of learning, theoretical insights can be gained on
how an evolutionary process is able to learn. Recently, the learnability of evo-
lutionary algorithms has been studied under the term evolvability. These stud-
ies provide insights into the process of evolution from the perspective of theo-
retical computer science. Feldman and Valiant (2008) motivate their studies
with the following example: Consider the human genome of roughly 20,000
genes. For each gene, the condition under which the protein corresponding to
it is expressed, in terms of all the other proteins, is encoded in its regulatory
region. This means that each protein is controlled by a function f of the other
20,000 proteins. The question is: How expressive can this function be, such
that it is able to perform the complex tasks of biology as well as be effi ciently
learnable by evolution?

Considering how diffi cult it is for an evolutionary process to discover a
particular learning or classifi cation algorithm and the representations used,
evolution is relevant here. Since individual learning can also be thought of as
an evolutionary process, such results can also be relevant for understanding the
discovery of search and learning methods within individuals.

As in the PAC learning model, classes of functions are considered and ex-
amined as to whether they are evolvable (i.e., learnable by an evolutionary
algorithm). Thus, similar to PAC learning—given a target function f from a
concept class C of ideal functions, a class of representations R, and a probabil-
ity distribution D over the input space—the task is to compute a representation
r from R which with high probability outputs the same function value as f when
choosing an input element according to D.

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

Foundations of Search 265

Evolvability (Feldman and Valiant 2008) considers mechanisms that can
evaluate many argument functions. New functions are explored by mutation.
Here it is crucial that only a small amount of the whole function set can be ex-
plored in each iteration of the evolution process, and that the evolution process
only takes a limited number of generations. Furthermore, it is assumed that the
performance of a function can be measured. This is crucial for evolution since
better functions should have a higher chance of being transferred to the next
generation. Selection of which functions to transfer to the next generation is
based on this performance measure.

Valiant shows that his model of evolvability is a constrained form of PAC
learning (Valiant 2009). The main difference between evolvability and PAC
learning is that the general PAC learning framework allows the update of a hy-
pothesis in an arbitrary way, depending on the examples that have been consid-
ered so far. In evolution, the update only depends on the aggregated knowledge
that has been obtained during the process. This knowledge is given by the set
of functions of the current generation. In contrast to the general PAC learning
framework, one cannot look at a particular example presented in the past.

Valiant showed that parity functions which are learnable in the PAC frame-
work are not evolvable (Valiant 2009). Furthermore, Feldman has given a new
characterization of SQ learning and shown that if a function is SQ learnable,
then it is also evolvable (Feldman 2008). This shows that a broad class of
functions is learnable by evolutionary algorithms that run in polynomial time.

Having examined learning and its relation to evolvability from a theoreti-
cal point of view, we now introduce a class of evolutionary algorithms used to
learn functions for classifi cation and learning.

Genetic Programming

After having stated some theoretical results on learning, we want to exam-
ine how computer scientists make use of mechanisms in nature to come up
with computer algorithms. Many scientists are acquainted with evolutionary
algorithms, such as genetic algorithms. Genetic programming, developed by
Koza (1991), is a type of evolutionary algorithm designed to learn certain types
of functions; one evolves functions to solve the given task. Individuals are
therefore functions, usually represented as trees describing mathematical ex-
pressions. Similar to the other evolutionary approaches, a set of individuals
constitutes a population. A parent population creates an offspring population
using crossover and mutation. The fi tness of a function is measured in terms
of its performance with respect to some test cases, possibly with penalties for
unduly complicated functions to avoid overfi tting. Based on their fi tness, in-
dividuals from the combined populations of parents and children are selected
to build the new parent population. The process is iterated until some stopping
criterion is satisfi ed. In the case of crossover, two trees are combined to con-
struct a new tree, which represents a new function. Mutation usually changes

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

266 J. A. R. Marshall and F. Neumann

the tree slightly such that a similar tree is obtained. A crucial difference to
Valiant’s notion of evolvability is that genetic programming uses less powerful
operators for constructing new solutions to the given problem. Valiant only
uses mutation, but allows a much more powerful mutation operator. Here, a
new function can be constructed by any algorithm; the only restriction is that
it must run in polynomial time. Thus, a basic question is: How powerful are
operators actually for evolution, and which setting is realistic to explain the
evolutionary learning process?

Genetic programming has had success in the fi elds of symbolic regression,
fi nancial trading, medicine, biology, and bioinformatics. A particularly rel-
evant application of genetic programming is that of Trimmer (2010, chapter
5) in an attempt to learn the well-known Rescorla-Wagner rule (Rescorla and
Wagner 1972), which describes classical conditioning:

V V V← + −()αβ λ . (16.4) 

This rule specifi es an update mechanism for learning the value of a stimulus
(V) based on experienced rewards (λ) and learning rate parameters (α and β).
The work of Trimmer is interesting in that it takes a fi tness landscape approach
and considers the relative performance of Rescorla-Wagner, as well as other
rules which could plausibly be discovered by the evolutionary process, to ex-
amine how hard learning that particular rule might be.

As discussed above, there are many applications of genetic programming
but the theoretical foundations of this type of algorithm are still in their infan-
cy. This is due to the complex stochastic processes of such algorithms, which
are hard to analyze. Different approaches have been applied to understand the
behavior of genetic programming in a theoretical way, such as Markov chain
analyses, convergence, and computational complexity analyses (see Poli et al.
2010). The goal of these approaches is to understand the learning process and
determine which structural properties make the learning task hard or easy.

Don’t Optimize, Satisfi ce

The predominant approach in theoretical studies of behavior is to consider the
optimal solution to a particular problem as a benchmark against which ob-
served behavior is assessed (Parker and Maynard Smith 1990). This approach
is possible because typically the problem under consideration is suffi ciently
simple so that an optimal solution can be derived. Classic examples relevant to
 behavioral ecology include bandit problems, secretary problems, and statisti-
cal decision problems. As soon as suffi ciently complex search problems are
considered, however, the optimality approach becomes impossible, because
optimal solutions to these kinds of problems are unknown and may not even
exist. In this new fi eld, therefore, the problem is no longer one of optimiza-
tion but of satisfi cing; that is, fi nding solutions that are good enough. Herbert

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

Foundations of Search 267

A. Simon (1996) referred to this as procedural rationality, as opposed to sub-
stantive rationality. Animals have been argued to satisfi ce, even when optimal
solutions are possible (Gigerenzer et al. 1999); yet in computational search,
 satisfi cing is typically not a shortcut to the best known solution, it is the best
known solution. It might appear that satisfi cing is no more computationally
feasible than optimization, given its link with NP-C problems, such as 3-SAT
(outlined above). The important point is, provided that the search criteria are
set appropriately for the search problem, that the average case complexity of
satisfi cing is much lower that optimization. If search criteria are set too high
for the distribution of solution values in some class of search problems, satis-
fi cing will be akin to optimization; however, if the criteria are set low enough,
but not so low as to accept anything, a useful satisfactory solution will usually
be found with a relatively small amount of searching.

In conclusion, we hope that our discussion has explained why optimal
search is so uniformly impossible in computational search problems. We sug-
gest that the results on heuristic search from the computational science com-
munity offer a rich store of ideas for those interested in behavior and cognition.

Acknowledgments

We are grateful to Nathaniel D. Daw and Thomas T. Hills for helpful comments on an
earlier draft and to the Ernst Strüngmann Forum for the invitation to participate in this
extended discussion.

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

From “Cognitive Search: Evolution, Algorithms, and the Brain,” edited by Peter M. Todd, Thomas T. Hills,
and Trevor W. Robbins. 2012. Strüngmann Forum Report, vol. 9, J. Lupp, series ed. Cambridge, MA:
MIT Press. ISBN 978-0-262-01809-8.

